Компонент ОПОП 11.05.01 Радиоэлектронные системы и комплексы Специализация Радиоэлектронные системы управления и передачи информации наименование ОПОП

<u>Б1.О.14</u> шифр дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Дисциплины (модуля)	Основы теории цепей		
Разработчик: Холодов Генна	ций Григорьевич	Утверждено на засе, радиотехники и	
ФИО			ование кафедры
кандидат техни ученая степень, звание	ческих наук_	Заведующий кафедр	оой радиотехники и связи
		подпись	<u>Борисова Л.Ф.</u>

1. Критерии и средства оценивания компетенций и индикаторов их достижения, формируемых дисциплиной (модулем)

Код и наименование		Результаты обучения по дисциплине (модулю)			Оценочные	Оценочные
наименование компетенции	индикатора(ов) достижения компетенции	Знать	Уметь	Владеть	средства текущего контроля	средства промежуточной аттестации
ПК-1 Способен использовать основные законы математики, единицы измерения, фундаментальные принципы и теоретические основы физики, теоретической механики	ИД-1 _{ПК-1} Применяет основные законы математики, единицы измерения, фундаментальные принципы и теоретические основы физики, теоретической механики; ИД-2 _{ПК-1} Исполняет основные законы математики, единицы измерения, фундаментальные принципы и теоретические основы физики, теоретической механики; ИД-3 _{ПК-1} Обладает навыками применения основных законов математики, единицы измерения, фундаментальных принципов и теоретических основ физики, теоретической механики; принципов и теоретических основ физики, теоретической механики;	Основные положения, методы и алгоритмы моделирования процессов в радиоэлектронике, радиотехнических системах и устройствах	Пользоваться типовыми методиками моделирования объектов и процессов.	Средствами разработки и создания имитационных моделей с помощью стандартных пакетов прикладных программ Навыками использования знаний физики и математики при решении практических задач	- комплект заданий для выполнения лабораторных работ; - комплект заданий для выполнения практических работ; - тестовые задания; - типовые задания по вариантам для выполнения РГР работы.	Экзаменационные билеты Результаты текущего контроля

ОПК-2	ИД-1 ОПК-2	Естественнонаучну	Применять	Средствами	- комплект заданий	Экзаменационные
Способен выявлять	Применяет основные	ю сущность	соответствующий	разработки и	для выполнения	билеты
естественнонаучную	законы математики,	проблем,	физико-	создания	лабораторных работ;	Результаты
сущность проблем,	единицы измерения,	возникающих	математический	соответствующего	- комплект заданий	текущего
возникающих в ходе	фундаментальные	в ходе	аппарат	физико-	для выполнения	контроля
профессиональной	принципы	профессиональной	для формализации,	математический	практических работ;	
деятельности, и	и теоретические основы	деятельности,	анализа и принятия	аппарата	- тестовые задания;	
применять	физики, теоретической	и применять	решения.	для формализации,	- типовые задания по	
соответствующий	механики;	соответствующий		анализа и принятия	вариантам для	
физико-	ИД-2 опк-2	физико-		решения	выполнения РГР	
математический	Исполняет основные	математический			работы.	
аппарат для их	законы математики,	аппарат для их				
формализации,	единицы измерения,	формализации,				
анализа и принятия	фундаментальные	анализа и принятия				
решения	принципы и	решения				
	теоретические основы					
	физики, теоретической					
	механики;					
	ИД-3 опк-2					
	Обладает навыками					
	применения основных					
	законов математики,					
	единицы измерения,					
	фундаментальных					
	принципов и					
	теоретических основ					
	физики, теоретической					
	механики;					

2. Оценка уровня сформированности компетенций (индикаторов их достижения)

Показатели	Шкала и критерии оценки уровня сформированности компетенций (индикаторов их достижения)			
оценивания компетенций (индикаторов их достижения)	Ниже порогового («неудовлетворительно»)	Пороговый («удовлетворительно»)	Продвинутый («хорошо»)	Высокий («отлично»)
Полнота знаний	Уровень знаний ниже минимальных требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущены не грубые ошибки.	Уровень знаний в объёме, соответствующем программе подготовки. Допущены некоторые погрешности.	Уровень знаний в объёме, соответствующем программе подготовки.
Наличие умений	При выполнении стандартных заданий не продемонстрированы основные умения. Имели место грубые ошибки.	Продемонстрированы основные умения. Выполнены типовые задания с не грубыми ошибками. Выполнены все задания, но не в полном объеме (отсутствуют пояснения, неполные выводы)	Продемонстрированы все основные умения. Выполнены все основные задания с некоторыми погрешностями. Выполнены все задания в полном объёме, но некоторые с недочетами.	Продемонстрированы все основные умения. Выполнены все основные и дополнительные задания без ошибок и погрешностей. Задания выполнены в полном объеме без недочетов.
Наличие навыков (владение опытом)	При выполнении стандартных заданий не продемонстрированы базовые навыки. Имели место грубые ошибки.	Имеется минимальный набор навыков для выполнения стандартных заданий с некоторыми недочетами.	Продемонстрированы базовые навыки при выполнении стандартных заданий с некоторыми недочетами.	Продемонстрированы все основные умения. Выполнены все основные и дополнительные задания без ошибок и погрешностей. Продемонстрирован творческий подход к решению нестандартных задач.
Характеристика сформированности компетенции	Компетенции фактически не сформированы. Имеющихся знаний, умений, навыков недостаточно для решения практических (профессиональных) задач. ИЛИ Зачетное количество баллов не набрано согласно установленному диапазону	Сформированность компетенций соответствует минимальным требованиям. Имеющихся знаний, умений, навыков в целом достаточно для решения практических (профессиональных) задач. ИЛИ Набрано зачетное количество баллов согласно установленному диапазону	Сформированность компетенций в целом соответствует требованиям. Имеющихся знаний, умений, навыков достаточно для решения стандартных профессиональных задач. ИЛИ Набрано зачетное количество баллов согласно установленному диапазону	Сформированность компетенций полностью соответствует требованиям. Имеющихся знаний, умений, навыков в полной мере достаточно для решения сложных, в том числе нестандартных, профессиональных задач. ИЛИ Набрано зачетное количество баллов согласно установленному диапазону

3. Критерии и шкала оценивания заданий текущего контроля

3.1 Критерии и шкала оценивания лабораторных/практических работ

Перечень лабораторных работ описание порядка выполнения и защиты работы, требования к результатам работы, структуре и содержанию отчета и т.п. представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

Оценка/баллы	Критерии оценивания
Отлично	Задание выполнено полностью и правильно. Отчет по лабораторной работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
Хорошо	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Удовлетворительно	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на лабораторную работу. Большинство требований, предъявляемых к заданию, выполнены.
Неудовлетворительно	Задание выполнено со значительным количеством ошибок на низком уровне. Многие требования, предъявляемые к заданию, не выполнены. ИЛИ Задание не выполнено.

3.2 Критерии и шкала оценивания посещаемости занятий

Посещение занятий обучающимися определяется в процентном соотношении

Баллы	Критерии оценки
10	посещаемость 75 - 100 %
5	посещаемость 50 - 74 %
0	посещаемость менее 50 %

4. Критерии и шкала оценивания результатов обучения по дисциплине (модулю) при проведении <u>промежуточной аттестации</u>

4.1 Критерии и шкала оценивания РГР работы

Перечень контрольных заданий, рекомендации по выполнению представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

В ФОС включен типовой вариант контрольного задания.

РГР №1 «Расчет линейной электрической цепи постоянного тока» (варианты).

РГР №2 «Расчет линейной электрической цепи синусоидального тока» (варианты)

Оценка/баллы	Критерии оценивания
Отлично	Работа выполнена полностью, без ошибок (возможна одна неточность, описка, не являющаяся следствием непонимания материала).
Хорошо	Работа выполнена полностью, но обоснования шагов решения недостаточны, допущена одна негрубая ошибка или два-три недочета, не влияющих на правильную последовательность рассуждений.
Удовлетворительно	В работе допущено более одной грубой ошибки или более двух-трех недочетов, но обучающийся владеет обязательными умениями по проверяемой теме.
Неудовлетворительно	В работе есть грубые ошибки и недочеты ИЛИ Контрольная работа не выполнена.

4.2 Критерии и шкала оценивания результатов освоения дисциплины (модуля) с экзаменом

Для дисциплин (модулей), заканчивающихся экзаменом, результат промежуточной аттестации складывается из баллов, набранных в ходе текущего контроля и при проведении экзамена:

В ФОС включен список вопросов и заданий к экзамену и типовой вариант экзаменационного билета:

Вопросы к экзамену

по дисциплине «Основы теории цепей»

- **1.** Активные элементы ЛЭЦ. Источники напряжений идеальные и реальные. Расчет модели реального источника ЭДС. Условия эквивалентности реальных источников электрической энергии. Закон Джоуля-Ленца.
- **2.** Активные элементы ЛЭЦ. Источники тока идеальные и реальные. Расчет модели реального источника тока. Зависимость выходных параметров источников электрической энергии от величины нагрузки.
- **3.** Пассивные элементы ЛЭЦ: резистивный, индуктивный, ёмкостной. Схемы замещения резистора, катушки, конденсатора. Добротность катушки индуктивности, добротность конденсатора.
- **4.** Понятие дуальности. Дуальность элементов и их характеристик. Дуальность цепей. Построение дуальной цепи.
- **5.** Топологические элементы ЛЭЦ. Электрическая схема, ветвь, узел, контур. Типы схем: планарные и непланарные. Эквивалентная схема замещения. Граф электрической цепи, вершина, ребро, цикл, дерево, хорда. Соотношение числа рёбер и числа вершин в графе. Графическое определение числа независимых контуров в электрической схеме.
- 6. Принцип наложения. Использование принципа наложения в расчетах разветвленных электрических цепей.
- **7.** Законы Кирхгофа: первый и второй. Определение числа независимых уравнений графическим методом. Обобщённая формула закона Ома для участка цепи как частный случай второго закона Кирхгофа.
- 8. Метод контурных токов. Теорема взаимности.
- 9. Метод узловых потенциалов. Метод двух узлов.
- **10.** Метод эквивалентного источника теорема Тевенина-Гельмгольца-Нортона. Теорема компенсации.

- **11.** Эквивалентные преобразования схем. Преобразование проводимостей ветвей треугольника в трёхлучевую звезду. Преобразование сопротивлений ветвей трёхлучевой звезды в треугольник.
- **12.** Теорема Теллегена в узком и широком смысле. Баланс мгновенных мощностей. Баланс комплексных мощностей в цепях с гармоническими колебаниями тока
- 13. Мощность в цепях в условиях постоянного тока. КПД системы.
- **14.** Цепи с источниками гармонических токов и напряжений. Основные понятия я определения: мгновенное значение тока, амплитуда, частота, фаза, начальная фаза, начальное значение тока. Гармоническое колебание как проекция вращающегося вектора. Количественные оценки гармонических функций: амплитудное, среднее, действующее значение и их физический смысл.
- **15.** Символический метод расчёта ЛЭЦ синусоидального тока. Символическое изображение действительного синусоидального тока: алгебраическая, тригонометрическая, показательная формы записи. Геометрическая интерпретация комплексного числа. Переход от комплексного изображения к оригиналу тока в цепи. Комплексное изображение напряжений на индуктивности и ёмкости как функции тока.
- **16.** Законы Ома и Кирхгофа в комплексной форме. Треугольники напряжений, сопротивлений, проводимостей, мощностей для цепей в условиях гармонического воздействия.
- **17.** Мощность на пассивных элементах при гармоническом воздействии. Мощность в цепи при гармоническом воздействии: мгновенная, средняя активная, реактивная, полная, комплексная.
- **18.** Условие выделения максимальной (активной) мощности в нагрузке в цепях синусоидального тока.
- **19.** Частотные характеристики ЛЭЦ: КЧХ, АЧХ, ФЧХ; КЧХ входные и передаточные. Годограф КЧХ. Способы графического представления КЧХ.
- **20.** Частотные характеристики идеализированных пассивных элементов. Логарифмический масштаб построения частотных характеристик. Логарифмические единицы измерения амплитудного и частотного интервала: децибел, Непер, октава, декада.
- **21.** Делители напряжения. Частотные характеристики комплексной передаточной функции. RC- цепи.
- **22.** Делители напряжения. Частотные характеристики, комплексной передаточной функции. RL- цепи.
- 23. Резонанс напряжений. Резонансные кривые последовательного колебательного контура. Преобразование мощности при резонансе в цепи.
- **24.** Частотные характеристики последовательного колебательного контура. Избирательная способность колебательного контура.
- **25.** Резонанс токов в идеализированном колебательном контуре. Резонансные кривые. Комплексные передаточные функции идеализированного параллельного колебательного контура. Резонанс токов в общем случае.
- **26.** Магнитносвязанные цепи: магнитный поток, потокосцепление, ЭДС самоиндукции, взаимная индуктивность контуров, коэффициент связи, ЭДС взаимной индукции. Условие обозначения на схемах. Последовательное соединение катушек.
- 27. Параллельное соединение магнитносвязанных катушек,
- 28. Индуктивно связанные контуры.
- **29.** Трансформаторы. Т-образные схемы замещения воздушного трансформатора с потерями.
- 30. Совершенный трансформатор.
- 31. Идеальный трансформатор. Согласование по сопротивлениям.

- **32.** Схема замещения трансформатора с ферромагнитным сердечником под нагрузкой. Приведенные параметры трансформатора.
- **33.** Четырехполюсники. Определения. Классификация. Уравнения передачи в Y- и Z- параметрах.
- **34.** Обобщенная матрица четырехполюсника в А-параметрах. Связь обобщенных параметров с параметрами XX и K3.
- **35.** Характеристические параметры четырехполюсника: характеристическое сопротивление, характеристические параметры передачи. Связь характеристических параметров четырехполюсника с обобщенными.
- 36. Входное сопротивление четырехполюсника при произвольной нагрузке.
- **37.** Соединения четырехполюсников: согласованное, последовательное, параллельное. Свойства согласованного каскадного соединения четырехполюсников.
- 38. Обратные связи в четырехполюсниках.
- 39. Основные свойства и эквивалентные схемы замещения активных четырехполюсников на ОУ: ИНУН, ИНУТ, ИТУН, ИТУТ. Гиратор на ОУ.
- **40.** Электрические фильтры: определения, классификации: по расположеник частотных областей, по типам схем звеньев, по видам частотных характеристик.
- **41.** Классификация электрических фильтров по типам схем звеньев: RC-фильтры, резонансные RLC-фильтры, RL-фильтры типа «k», RL-фильтры типа «m», полиномиальные RL-фильтры.
- 42. Области применения и тенденции разработок электрических фильтров.
- **43.** Электрические RC-фильтры: ФВЧ, ФНЧ, полосовые и режекторные фильтры, общая характеристика.
- **44.** Электрические резонансные RLC-фильтры: общая характеристика, широкополосовые и режекторные фильтры.
- 45. Условие пропускания RL-фильтры типа «k». Определение частот среза фильтра.
- **46.** Характеристическое сопротивление RL-фильтры типа «k» в полосе пропускания и в полосе задержания.
- **47.** Фильтры типа «m»: общая характеристика, получение производных звеньев типа «m» из прототипов типа «k».
- **48.** Цепочечные фильтры: общая характеристика, согласование последовательнопроизводного полузвена и полузвена прототипа, согласование параллельнопроизводного полузвена и полузвена прототипа.
- **49.** Полиномиальные фильтры: общая характеристика, фильтры Баттерворта, Чебышева, Бесселя.
- **50.** Представление негармонического периодического сигнала в виде тригонометрического ряда Фурье. Спектральное представление негармонического периодического сигнала.
- **51.** Представление негармонического периодического сигнала в виде ряда Фурье в комплексной форме и его геометрическая интерпретация (для k-той гармоники).
- **52.** Разложение в ряд Фурье при различных аналитических выражениях частей кривой сигнала. Особенности разложения в ряд Фурье симметричных кривых сигнала.
- **53.** Числовые характеристики периодического негармонического сигнала: действующее, среднее, среднее по модулю значения. Определение значений сигналов с помощью измерительных приборов.
- **54.** Характеристики формы кривых: коэффициенты формы, амплитуды, искажения, гармоник. Влияние характера элементов цепи на форму и спектр периодических негармонических сигналов.
- 55. Спектральная плотность непериодического сигнала. Спектры непериодических сигналов как предельный случай спектров периодических сигналов.
- **56.** Общая схема расчета цепей спектральным методом. Расчет тока двухполюсника при непериодическом воздействии.

- **57.** Расчет цепей при периодических негармонических воздействиях. Общие положения. Порядок расчета. Мощность периодического негармонического тока. Биения колебаний. Принцип амплитудной модуляции.
- **58.** Физическая сущность переходного процесса. Начальные условия. Законы коммутации. Математическая модель переходного процесса.
- **59.** Переходный ток. Общая схема расчета переходного процесса классическим методом.
- 60. Порядок расчета переходного процесса в цепи с одним реактивным элементом.
- **61.** Расчет переходного процесса в четырехполюснике. Условия неискаженной передачи сигнала через четырехполюсник.
- **62.** Подключение RC-цепи к источнику постоянной ЭДС. Постоянная времени RCцепи
- 63. Разрядка емкости на сопротивление.
- **64.** Использование RC-цепей в качестве элементов задержки времени.
- 65. Интегрирующие цепи. Дифференцирующие цепи.
- 66. Подключение катушки индуктивности к источнику постоянной ЭДС.
- 67. Форсировка переходных процессов.
- 68. Отключение катушки индуктивности от источника постоянной ЭДС.
- **69.** Подключение RC-цепи к источнику синусоидальной ЭДС.
- **70.** Подключение катушки индуктивности к источнику синусоидальной ЭДС. Переходные процессы в цепях второго порядка. Общая схема расчета цепи при включении на напряжение любой формы.
- **71.** Единичная функция. Переходная характеристика цепи. Расчет цепи при воздействии любой формы с помощью формул Дюамеля.
- **72.** Общие принципы качественного анализа переходного процесса в цепи. Аналитическое описание кривых переходного процесса. Построение качественных кривых переходного процесса в цепи.
- **73.** Преобразование по Лапласу. Операторная схема замещения. Операторные изображения элементов схемы и сигналов в цепи. Законы Ома и Кирхгофа в операторной форме.
- **74.** Теоремы операторного метода расчета цепи: теорема запаздывания оригинала, теорема смещения изображения, произведение изображений, теорема разложения (Хевисайда).
- 75. Общая схема расчета цепи операторным методом. Расчет цепи с помощью передаточной функции. Расчет реакции цепи на воздействие любой формы.

Переходные характеристики цепи и их расчет.

Образец экзаменационного билета

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МУРМАНСКИЙ АРКТТИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГАОУ ВО «МАУ»)

МОРСКАЯ АКАДЕМИЯ

Наименование структурного подразделения

Кафедра радиотехники и связи

Наименование кафедры

Специальность 11.05.01 Радиоэлектронные системы и комплексы

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №

по дисциплине «Основы теории цепей» (наименование дисциплины)

Вопрос 1. Законы Ома и Кирхгофа в комплексной форме. Треугольники напряжений, сопротивлений, проводимостей, мощностей для цепей в условиях гармонического воздействия

Вопрос 2. Топологические элементы ЛЭЦ. Электрическая схема, ветвь, узел, контур. Эквивалентная схема замещения. Граф электрической цепи, вершина, ребро, цикл, дерево, хорда. Соотношение числа рёбер и числа вершин в графе. Графическое определение числа независимых контуров в электрической схеме.

Вопрос 3. Мощность на пассивных элементах при гармоническом воздействии. Мощность в цепи при гармоническом воздействии: мгновенная, средняя активная, реактивная, полная, комплексная.

Оценка	Критерии оценки ответа на экзамене		
Отлично	Обучающийся глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, не затрудняется с ответом при видоизменении вопроса. Владеет специальной терминологией, демонстрирует общую эрудицию в предметной области, использует при ответе ссылки на		
Хорошо	материал специализированных источников, в том числе на Интернет-ресурсы. Обучающийся твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, владеет специальной терминологией на достаточном уровне; могут возникнуть затруднения при ответе на уточняющие вопросы по рассматриваемой теме; в целом демонстрирует общую эрудицию в предметной области.		
Удовлетворительно	Обучающийся имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, плохо владеет специальной терминологией, допускает существенные ошибки при ответе, недостаточно ориентируется в источниках специализированных знаний.		
Неудовлетворительно	Обучающийся не знает значительной части программного материала, допускает существенные ошибки, нарушения логической последовательности в изложении программного материала, не владеет специальной терминологией, не ориентируется в источниках специализированных знаний. Нет ответа на поставленный вопрос.		

Оценка, полученная на экзамене, переводится в баллы («5» - 20 баллов, «4» - 15 баллов, «3» - 10 баллов) и суммируется с баллами, набранными в ходе текущего контроля.

Итоговая оценка по дисциплине (модулю)	Суммарные баллы по дисциплине (модулю), в том числе	Критерии оценивания
Отлично	91 - 100	Выполнены все контрольные точки текущего контроля на высоком уровне. Экзамен сдан
Хорошо	81-90	Выполнены все контрольные точки текущего контроля. Экзамен сдан
Удовлетворительно	70- 80	Контрольные точки выполнены в неполном объеме. Экзамен сдан
Неудовлетворительно	69 и менее	Контрольные точки не выполнены или не сдан экзамен

5. <u>Задания диагностической работы</u> для оценки результатов обучения по дисциплине (модулю) в рамках внутренней независимой оценки качества образования

ФОС содержит задания для оценивания знаний, умений и навыков, демонстрирующих уровень сформированности компетенций и индикаторов их достижения в процессе освоения дисциплины (модуля).

Комплект заданий разработан таким образом, чтобы осуществить процедуру оценки каждой компетенции, формируемых дисциплиной (модулем), у обучающегося в письменной форме.

Содержание комплекта заданий включает: тестовые задания.

Комплект заданий диагностической работы

Комп	етенция	ПК-1 Способен использовать основные законы математики, единицы				
измеј	измерения, фундаментальные принципы и теоретические основы физики, теоретической					
меха	ники)					
1.		ходящий в узел с двумя параллельными сопротивлениями R1=3 кОм и				
	R2=2	кОм, равен 2 А. Определите значение тока через R1?:				
	A.	1,2 A				
	Б.	0,8 A				
	B.	1 A				
	Γ.	1,5 A				
2.	При м	петоде наложения источник тока заменяется?:				
	A	короткозамкнутой цепью				
	Б	разрывом				
	В	ни чем не заменяется				
	Γ	резистором				
3.	При м	методе наложения источник напряжения заменяется?:				
	A	короткозамкнутой цепью				
	Б.	разрывом				
	B.	ни чем не заменяется				
	Γ.	резистором				
4.	_	аком методе расчетов тока в цепи один из узлов заземляется?:				
	A.	узловых потенциалов				
	Б.	контурных токов				
	В.	наложения				
	Γ.	разброса				
5.		валентное сопротивление рассчитывается ?:				
	A.	для любых цепей				
	Б.	для цепей с несколькими источниками питания				
	Β. Γ.	для цепей с одним источником питания				
6.		никогда не рассчитывается акое источник тока?:				
0.	A.	лкое источник тока:. Любой источник электрической энергии				
	Б.	Источник э.д.с				
	В.	Источник напряжения				
	Γ .	Источник питания, имеющий большое внутренне сопротивление				
7.		ательный контур – это?:				
/ .	A.	активная цепь				
	Б.	индуктивная цепь				
	B.	емкостная цепь				
	D .	CMROCTILIA LICITO				

	Г. R, L, С - цепь
8.	Уравнение мгновенного значения переменного тока в общем виде?:
	A. i = U/R
	$\int_{\mathbf{D}_{\bullet}} i = \frac{U_m}{R}$
	$\mathbf{B.} \ i = I \cdot m \cdot \sin(\boldsymbol{\omega} \cdot t \pm \boldsymbol{\varphi})$
	$i = \frac{P_m}{U_m}$
	7.
9.	Полная проводимость «у» цепи с параллельно включенными элементами R,
	L, C?:
	$\mathbf{A} \cdot \mathbf{y} = \sqrt{g^2 + b_L^2}$
	$y = \sqrt{g^2 + b_C^2}$
	D•
	$\mathbf{B}_{L} y = \sqrt{g^2 + (b_L - b_C)^2}$
	$\Gamma \cdot y = g^2 + b_C^2$
10.	Происходит разброс тока I по двум параллельным ветвям R1 и R2.
	Определите значение тока через R1?:
	$A. I_p = I \frac{R1}{R1 + R2}$
	$\mathbf{F}_{\mathbf{b}} = I \frac{R2}{R1 + R2}$
	$B_{p} = I \frac{R2}{R1}$
	$I_{p} = I \frac{R1}{R2}$
	тенция ПК-2 Способен выявлять естественнонаучную сущность проблем,
	кающих в ходе профессиональной деятельности, и применять соответствующий
физик 1.	о-математический аппарат для их формализации, анализа и принятия решения) В схеме мостового выпрямителя неправильно включен диод
1.	*
	VD_1 R_N VD_2
	VD_3 VD_4
	A. VD1
	Б . VD2
	B. VD3
	Γ. VD4
2.	На рисунке изображена схема выпрямителя

А. Двухполупериодного моста

	Б. Трехфазного однополупериодного
	В. Однополупериодного
	Г. трехфазного однополупериоднго
3.	На рисунке изображена схема выпрямителя
	А. Двухполупериодного моста
	Б. Трехфазного однополупериодного
	В. Однополупериодного
	Г. Двухполупериодного с выводом средней точки обмотки трансформатора
4.	При каком методе расчетов тока в цепи один из узлов заземляется?:
	А. узловых потенциалов
	Б. контурных токов
	В. наложения
	Г. разброса
5.	В цепи известны сопротивления R1= 20 Ом, R2= 30 Ом, ЭДС источника E=120
	В и мощность Р=120 Вт всей цепи. Мощность Р2 второго резистора будет
	равна
	$I = R_I$
	
	$\bigcup E$ $\bigcup R_3$
	A. 30 BT
	Б. 125 Вт
	B 25 BT
	Г. 80 Вт
6.	В цепи известны сопротивления R1= 10 Ом, R2= 20 Ом, напряжение U=100 В
	и мощность Р=200 Вт всей цепи. Мощность Р2 второго резистора будет
	равна
	•
	R_1 R_2 R_3
	A
	•
	A. 30 BT
	Б. 25 Вт
	B 125 BT
	Γ. 80 B _T
7.	Если сопротивления и токи в ветвях известны и указаны на рисунке, то
	потребляемая мощность составляет
	$ \begin{array}{c c} I_1 = lA & \downarrow & I_2 = 2A \\ R_1 = 2O_M & R_2 = lO_M & R_3 = 4O_M \end{array} $ $ \begin{array}{c c} I_3 = lA & \downarrow & I_3 = lA \\ R_3 = 4O_M & I_3 = 4O_M \end{array} $
	$R_1 = 2O_M \mid \square R_2 = 1O_M \square R_3 = 4O_M \mid \square$
	E_1 E_2 E_3

	A. 8 Bt
	Б. 10 Вт
	В 2 Вт
	Г. 20 Вт
8.	Уравнение мгновенного значения переменного тока в общем виде?:
	A. i = U/R
	$b_{\bullet} i = \frac{U_m}{R}$
	$\mathbf{B.} \ i = I \cdot m \cdot \sin(\boldsymbol{\omega} \cdot t \pm \boldsymbol{\varphi})$
	$i = \frac{P_m}{U_m}$
9.	Полная проводимость «у» цепи с параллельно включенными элементами R,
	L, C?:
	$A. y = \sqrt{g^2 + b_L^2}$ $B. y = \sqrt{g^2 + b_C^2}$
	B. $y = \sqrt{g^2 + (b_L - b_C)^2}$
	$\Gamma \cdot y = g^2 + b_C^2$
10.	Происходит разброс тока I по двум параллельным ветвям R1 и R2.
	Определите значение тока через R1?:
	I = I R1
	$A. I_p = I \frac{R1}{R1 + R2}$
	$\mathbf{F} \cdot I_p = I \frac{R2}{R1 + R2}$
	R2